COMP3141 Assignment 2

Haskell-Augmented Regular Expressions (H.A.R.E.)
Version 1.2

Liam O’Connor

Semester 1, 2018

Marking Total of 20 marks (20% of practical component)
Due Date Friday, 25th May, 2018, 23:55

Late Penalty The maximum available mark is reduced by 10% if the assignment is one
day late, by 25% if it is 2 days late and by 50% if it is 3 days late. Assignments
that are late 4 days or more will be awarded zero marks. So if your assignment is
worth 88% and you submit it one day late you still get 88%, but if you submit it
two days late you get 75%, three days late 50%, and four days late zero.

Submission Instructions The assignment can be submitted using the ‘give’ system.

To submit from a CSE terminal, type:

$ give cs3141 Hare Hare.hs

Overview

In this assignment, you will refactor a text-matching regular expressions engine to use
a more strongly-typed interface. These stronger types not only reduce the possibility
for bugs, but also improve the readability and clarity of the code base. On top of the
strongly-typed version, you will implement a number of additional convenience combi-
nators for working with regular expressions. This assignment will give you experience
using Haskell type system extensions (specifically GADTS), experience programming
with monads and applicative functors, and introduce you to concepts such as alterna-
tives.

Provided Code

The provided code consists of a number of modules:

Hare.hs contains the stubs of the code you should implement.

Untyped.hs contains an untyped, unextended version of the regex engine.
HareMonad.hs contains the monadic type used to write the matching algorithm.
Tests.hs contains the main function for running tests.

Tests/Support.hs contains the support code for running tests.
Tests/UnitTests.hs contains properties for the basic regular expressions.

Tests/Transcript.hs contains some acceptance tests for your combinators, for analysing
a UNSW transcript.

Tests/Examples.hs contains all examples from this spec, as unit tests.

Note: The only file you can submit is ‘Hare.hs’, so make sure your submission compiles
with the original versions of all other files.

Regular Expressions

Regular expressions are a popular way to describe and manipulate patterns of strings.
Often they are used to search for a substring that matches a particular pattern, and
then extracting information from that substring.

Many languages include regular expressions as a built in feature or in their standard
library. If you have done COMP2041, you will have been exposed to several such lan-
guages. Unfortunately, Haskell is not such a language. To remedy this, Helen the Hare
started to design H.A.R.E, a regular expressions library for Haskell.

She started by encoding the basic building blocks of regular expressions as a Haskell
data type.

data RE = Empty -— Matches the empty string
| Fail -- Matches no strings
| Char [Char] -- Matches a single character from the list
| Seq RE RE -- Matches the two expressions in sequence
| Choose RE RE -- Matches either the first, or the second
| Star RE -- Matches the expression zero or more times

Note: If you have seen regular expressions before, you may be used to more features
being available than the ones above. In general, those features can be translated into
the features given above.

Some simple examples of these regular expressions are given in the table below.

Regular Expression Matches

Star (Char [’0’..°9’]) ‘Seq‘ Char [’0’..°9°]| "1234","039","0",...

Star (Char [’a’]) ‘Choose‘ Star (Char [’b’])| "","a","b","aa","bb"..

Fail -- nothing

Empty nn

In order to define a matching algorithm for regular expressions, Helen defined a type
called Hare (found in HareMonad.hs), which is similar to State String except that the
return type is wrapped in a monad f:

newtype Hare f a = Hare { runHare :: String -> f (String, a) }
The hare function can be used to “run” a Hare computation on a string:

hare :: Functor f => Hare f a -> String -> f a
hare a s = fmap snd (runHare a s)

Helen has parameterised the Hare type by f so that it could be instantiated to Maybe
if the user only wishes to find the first match for a particular regular expression, or to
the list type constructor [] if the user wishes to find all possible matches of the regular
expression. This requires us to make use of the Alternative type class, which has two
built in methods:

class Applicative f => Alternative f where
empty :: f a
(<[> :: fa->fa->fFfa

The empty method denotes failure. For the list instance, it is the empty list [], whereas
for the Maybe instance it is Nothing. The (<|>) method denotes alternation. For the
list instance it is the same as concatentaion (++), whereas for the Maybe instance, it is
a left-biased choice, like so:

instance Alternative Maybe where
empty = Nothing
Just a <|> b = Just a
Nothing <[> b = D

To avoid confusing empty with the Empty constructor for regular expressions, Helen also
defined an alias for empty, called failure:

failure :: (Alternmative f, Monad f) => Hare f a
failure = empty

The readCharacter action is also of note, which removes a character from the String
state and returns it. If there are no characters left in the string, it will fail:

readCharacter :: (Alternative f, Monad f) => Hare f Char
readCharacter = Hare $ \s -> case s of
[1 -> empty

(x:x8) -> pure (xs,x)

Armed with just readCharacter and the Monad, Applicative and Alternative in-
stances for Hare, Helen defines the matching algorithm, in a function called match (found
in Untyped.hs):

match :: (Monad f, Alternative f) => RE -> Hare f Results

Here the Results type describes the string that was matched by each part of the regular
expression:

data Results None

Tuple Results Results

| Character Char
|
| Repetition [Results]

Seeing as the Empty expression matches any string, Helen simply returns None in that
case:

match Empty = pure None

Conversely, because Fail matches no strings at all, Helen always calls failure if at-
tempting to match this expression:

match Fail = failure

To define the case for Char, Helen uses the built-in function guard, which will fail if the
given condition evaluates to false:

match (Char cs) = do
x <- readCharacter
guard (x ‘elem‘ cs)
pure (Character x)

To define the case for Seq, Helen makes use of the Monad instance, first matching on the
first expression a, then the second b:

match (Seq a b) = do
ra <- match a
rb <- match b

pure (Tuple ra rb)

Because there is no dependencies between ra and rb, this could also have been defined
using the Applicative instance, as follows:

match (Seq a b) = Tuple <$> match a <*> match b
For the case for Choose, Helen makes use of the Alternative (<|>) method:

match (Choose a b) =
match a
<|> match b

For Star, Helen observed the following bijectionlﬂ
Star r === (r ‘Seq‘ Star r) ‘Choose‘ Empty

For this reason, Helen implements Star a by first matching the expression a, then
matching on Star a recursively. If either match fails, it falls back to returning the
empty match:

match (Star a) =
addFront <$> match a <*> match (Star a)
<|> pure (Repetition [])
where
addFront x (Repetition xs) = Repetition (x:xs)
addFront = error "(should be) impossible!"

Note that Helen defined Star to choose the longer alternative first so that if used with
Maybe, the match function will return the longest match rather than the empty string.

Having defined match, Helen can now define the regex matching operator (=), which
searches through a string for a match to the expression:

(=7) :: (Monad f, Alternative f) => String -> RE -> f Results
str =7 re = hare matchAnywhere str
where matchAnywhere = match re <|> (readCharacter >> matchAnywhere)

If we look at some examples, we can see that invoking it with the Maybe monad returns
just the first result, whereas the list version returns all results:

*> "COMP3141" =~ (Char [’0’..79’]) :: Maybe Results
Just (Character ’37)
*> "COMP3141" =~ (Char [’07..°9°]) :: [Results]

[Character ’3’,Character ’1’,Character ’4’,Character ’1°]

"While they return different results, there is a bijection between them

A Typed Implementation (12 Marks)

Helen’s untyped implementation works, but it’s not very clean. For example, we know
that the Results returned by the regular expression

Char [’07..°9’] ‘Seq‘ Star (Char [’0’..°97])
will be of the format:
Tuple (Character c) (Repetition [Character x, Character y, ...])

but any function designed to process the Results from this regular expression would
have to be partial, because we did not encode the format of the results returned into the
type system.

Instead of having a Results type, your first task will be to define a type-indexed
version of the RE type and associated match function, in Hare.hs.

data RE :: * -> % where
Empty :: RE O
Fail :: RE a
—-= Your constructors here

Each constructor has an additional type argument which specifies the type of the result
returned from each expression. We have defined the first two constructors for you. You
will have to find appropriate definitions for the rest of them.

For implementing match, feel free to look at Helen’s original implementation in the
Untyped.hs module as a guide. The test cases provided may also be instructive in
getting your implementation type-checking and correct.

Marking Criteria

Marks | Description

Empty type correct; match implementation correct.
Fail type correct; match implementation correct.
Char type correct; match implementation correct.
Seq type correct; match implementation correct.
Choose type correct; match implementation correct.
Star type correct; match implementation correct.
12 | Total

NN NN

Adding Actions (1 Marks)

Next, we will add an additional constructor to RE that does not change the set of strings
matched, but allows us to run an arbitrary transformation on the results returned from
the match:

Action :: (a -> b) -=> RE a -> RE b

Your task in this part is to implement the match function for this constructor. You may
find the Functor instance for Hare useful.

Examples

x> "kxk'" =" Action length (Star (Char [’*’])) :: [Int]
(s,2,1,0,2,1,0,1,0,0]

*> "AXax" =" Action isUpper (Char [’a’,’A’]) :: [Bool]
[True, False]

*> let £ (x,y) = [x,y]

x> let atoz = Char [’a’..’z’]
*> "ab01cd20" =" Action f (atoz ‘Seq‘ atoz) :: [String]
[llabll’llcdll]

Marking Criteria
Marks | Description
1 | Action clause in match correct.
1 | Total

Utility Combinators (7 Marks)

Using our newly minted Action constructor, you must now define a series of combinator
functions that allow us to define a lot of the features people normally expect to find in
a regular expressions system.

cons function

The cons function matches a regular expression for an element of type a, followed by a
regular expression for a list [al, and returns that element prepended to the list.

cons :: RE a -> RE [a] -> RE [a]

Examples:

*> "10100" =" cons (Char [’1’]) (Star (Char [’0’])) :: [String]
["10“,“1",“100","10","1"]

*> "10100" =" cons (Char [’1’]) (Action (comst []) Empty) :: [String]
[lllll,lllll]

plus function

The plus function is like Star, but requires the expression given to occur at least once.
Thus, this function can be defined using Action, Seq and Star.

plus :: RE a -> RE [a]

Examples:

x> "10100" =" plus (Char [’0°]) :: [String]
["O“,"OO","O","O"]

*> let atoz = Char [’a’..’z’]

x> let digits = Char [’0°..°97]

*> "aplc3" =" plus (atoz ‘Seq‘ digits) :: [[(Char,Char)]]

[[Cb,717),Cc’,3)], b, 1], [Ce’,3)]]

string function

The string function produces a regex that only matches the given string, and returns
it. You should be able to implement it using Char, cons, Empty and Action.

string :: String -> RE String
Examples:

*> let comp3141 = string "COMP3141"

*> "My favourite subject is COMP3141" =" comp3141 :: Maybe String
Just "COMP3141"

*> "My favourite subject is MATH1141" =" comp3141 :: Maybe String
Nothing

choose function

The choose function is like the Choose constructor, but generalised to lists. That is,
choose [a, Db] is equivalent to a ‘Choose b. What should choose [] be?

choose :: [RE al] -> RE a
Examples:

x> let re = choose [string "COMP", string "MATH", string "PHYS"]
*> "COMP3141, MATH1081, PHYS1121, COMP3121" =" re :: [String]
["COMP","MATH","PHYS","COMP"]

*> "abc" =" choose [] :: Maybe String
Nothing
option function

The option function matches the given expression zero or one times. In other words,
if the expression matches, it returns Just that match, otherwise Nothing. You can
implement this combinator with Action, Choose and Empty.

option :: RE a -> RE (Maybe a)
Examples:

x> let digits = Char [’0°..°97]

x> let sign = Action (fromMaybe ’+’) (option (Char [’-’])
x> "-30 5 3" =" (sign ‘cons‘ plus digits) :: [String]
["=30","=3","+30","+3","+0","+5","+3"]

*> "foo" =" option (Char [’a’]) :: [Maybe Char]
[Nothing,Nothing,Nothing,Nothing]

Note: As with Star, prefer longer matches over shorter ones, so that the results appear
as in the above example.

rpt function

The rpt combinator allows a regular expression to be repeated a fixed number of times.
The expression rpt n x is equivalent to repeating x in sequence n times, returning the
results in a list.

rpt :: Int -> RE a -> RE [al

Examples:

x> let digits = Char [’0°..°9’]

x> let programs = choose [string "COMP", string "PHYS", string "MATH"]
x> let courseCode = programs ‘Seq‘ rpt 4 digits

*> "COMP3141, MATH1081, and PHYS1121" =" courseCode :: [(String,String)]
[("COMP","3141"), ("MATH","1081"), ("PHYS","1121")]

x> "foo" =" rpt O (Char [’a’]) :: Maybe [Charl
Just nn

rptRange function

Lastly, the rptRange function takes a range of numbers (x,y). You may assume that
x <y. It will match the given regex at least x times and at most y times.

rptRange :: (Int, Int) -> RE a -> RE [al

Examples:

x> "1234" =" rptRange (2,4) (Char [’0’..°9°]) :: [String]
[ll1234||’ll123||’||12||,||234|l’||23||’ll34||]

*> "1234" =" rptRange (3,3) (Char [’0’..°9°]) :: [String]
[ll123||,"234||]

Note: As with Star and option, prefer longer matches to shorter ones.

Marking Criteria
Marks | Description
cons implementation correct.

plus implementation correct.

string implementation correct.

choose implementation correct.
option implementation correct.
rpt implementation correct.

rptRange implementation correct.
Total

P [VY UG (Y YUY VY U

10

Compiling and Building

In addition to the standard library, this project depends on the QuickCheck and HUnit
testing libraries and the test framework called tasty. For CSE machines, we have already
a configured a package database on the course account that should build the assignment
without difficulty using the standard Haskell build tool cabal. For students using their
own computer, we instead recommend the alternative build tool stack, available from the
Haskell Stack website at https://www.haskellstack.org. We have provided a stack
configuration file that fixes the versions of each of our dependencies to known-working
ones. If you use stack to set up your toolchain, you should have minimal compatibility
difficulties regardless of the platform you are using. If you are using versions of GHC or
Haskell build tools supplied by your Linux distribution, these are commonly out of date
or incorrectly configured. We cannot provide support for these distributions.

If you are using a Mac computer, you may be interested in using the Haskell for Mac
IDE. The Lecturer in Charge has access to special (free) student licenses for COMP3141
students, so contact the lecturer for more information.

Detailed, assignment-specific instructions for each build tool are presented below.

On CSE Machines
Enter a COMP3141 subshell by typing 3141 into a CSE terminal:

$ 3141
newclass starting new subshell for class COMP3141...

From there, if you navigate to the directory containing the assignment code, you can
build the assignment by typing:

$ cabal build

To run the program from ‘Tests.hs’, which contains all the unit, acceptance, and prop-
erty tests, type

$./dist/build/HareTests/HareTests
To start a ghci session, type:
$ cabal repl
Lastly, if for whatever reason you want to remove all build artefacts, type:

$ cabal clean

For stack users

Firstly, ensure that GHC has been setup for this project by typing, in the directory that
contains the assignment code:

$ stack setup

11

https://www.haskellstack.org

If stack reports that it has already set up GHC, you should be able to build the assign-
ment with:

$ stack build

This build command will, on first run, download and build the library dependencies
as well, so be sure to have an internet connection active. To run the program from
‘Tests.hs’, which contains all the unit, acceptance, and property tests, type

$ stack exec HareTests
To start a ghci session,type:
$ stack repl
Lastly, if for whatever reason you want to remove all build artefacts, type:

$ stack clean

For Haskell for Mac users

The provided Haskell for Mac code bundle should include everything you need, however
you will need to install the command line tools and the libraries used by following these
instructions:

e In the Preferences menu, go to the Command Line tab and click the Download
Installer button. This should get you to the website where you can download the
Haskell CLI Installer. Once it is installed, there should be a Target option in the
menu bar.

e Go to Target, then Package Management. Install the following three packages:

— tasty
— tasty-quickcheck
— tasty-hunit

e You should now be able to run tests by going to Tests.hs and then going to
Target, and Run.

Marking and Testing
Testing
A number of different test suites are provided:

e The Tests/Transcript.hs file contains some high-level acceptance tests that ex-
tract various bits of information from an anonymised UNSW student transcript,
located in Tests/transcript.txt.

12

e The Tests/UnitTests.hs file contains some QuickCheck properties that, while
not complete specifications, will help you to gain some assurance for your imple-
mentation of match for each constructor.

e The Tests/Examples.hs file contains each example presented in this spec docu-
ment as a unit test.

e The Tests.hs file contains a tasty test suite containing all of the above tests.

Marking

All marks for this assignment are awarded based on automatic marking scripts, which
are comprised of QuickCheck properties, acceptance tests, and unit tests. Marks are
not awarded subjectively, and are allocated according to the criteria presented in each
section.

Barring exceptional circumstances, the marks awarded by the automatic marking
script are final. For this reason, please make sure that your submission compiles and
runs correctly on CSE machines. We will use similar machines to mark your assignment.

A dry-run script that runs the tests provided in the assignment code will be provided.
When you submit the assignment, please make sure the script does not report any
problems.

Late Submissions

Unless otherwise stated if you wish to submit an assignment late, you may do so, but
a late penalty reducing the maximum available mark applies to every late assignment.
The maximum available mark is reduced by 10% if the assignment is one day late, by
25% if it is 2 days late and by 50% if it is 3 days late. Assignments that are late 4 days
or more will be awarded zero marks. So if your assignment is worth 88% and you submit
it one day late you still get 88%, but if you submit it two days late you get 75%, three
days late 50%, and four days late zero.

Extensions

Assignment extensions are only awarded for serious and unforeseeable events. Having
the flu for a few days, deleting your assignment by mistake, going on holiday, work
commitments, etc do not qualify. Therefore aim to complete your assignments well
before the due date in case of last minute illness, and make regular backups of your
work.

Plagiarism

Many students do not appear to understand what is regarded as plagiarism. This is
no defense. Before submitting any work you should read and understand the UNSW
plagiarism policy https://student.unsw.edu.au/plagiarism.

13

https://student.unsw.edu.au/plagiarism

All work submitted for assessment must be entirely your own work. We regard un-
acknowledged copying of material, in whole or part, as an extremely serious offence. In
this course submission of any work derived from another person, or solely or jointly writ-
ten by and or with someone else, without clear and explicit acknowledgement, will be
severely punished and may result in automatic failure for the course and a mark of zero
for the course. Note this includes including unreferenced work from books, the internet,
etc.

Do not provide or show your assessable work to any other person. Allowing another
student to copy from you will, at the very least, result in zero for that assessment. If
you knowingly provide or show your assessment work to another person for any reason,
and work derived from it is subsequently submitted you will be penalized, even if the
work was submitted without your knowledge or consent. This will apply even if your
work is submitted by a third party unknown to you. You should keep your work private
until submissions have closed.

If you are unsure about whether certain activities would constitute plagiarism ask us
before engaging in them!

14

